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Causally Learning an Optimal Rework Policy



Outline

▪ Rework process in opto-electronic semiconductor manufacturing

▪ Technical background about double/debiased machine learning

▪ Application to rework-policy learning and results
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Phosphorous Conversion Process

▪ Light-emitting diods (LEDs) are opto-electronic semiconductors naturally emitting 
a blue wavelength

▪ Customers however demand a broad range of 
desired target color points, i.e. emitting a 
white light.

▪ The process of phosphorous coating applies 
multiple layers to the chips, shifting the 
wavelength towards white light in the color 
spectrum.
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Source: Jaehee Cho, Jun Hyuk Park, Jong Kyu Kim, and E. Fred Schubert. 
White light-emitting diodes: History, progress, and future. Laser & 
Photonics Reviews, 11, 2017.



Rework Process
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• In the observed data, the rework decision is purely made by visual inspection of the point 
𝑪𝟏

• Rework is a production step which repeats a previous production stage with adjustments

𝐶1
o

Rework



Causal Model
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Double Machine Learning

▪ Double/debiased machine learning (DML) is a framework based on machine 
learning tools for causal inference and estimation of treatment effects introduced 
by Chernozhukov et. al (2018). 

▪ Resulting estimator has good properties ( 𝑁-consistency, approx. Gaussian)

▪ Growing number of estimators and models available in python and R package 
DoubleML [Bach et. al (2022)].
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The Key Ingredients of DML

1. Neyman Orthogonality

Inference is based on a method-of-moments estimator that obeys the Neyman
orthogonality condition.

2. High-Quality Machine Learning Estimators

The nuisance parameters are estimated with high-quality (fast-enough converging) 
machine learning methods.

3. Sample Splitting

To avoid the biases arising from overfitting, a form of sample splitting is used.
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Data

▪ 𝑛 = 32,669 observations of independent chip lots

▪ We use 72 measurements as covariates X per chip lot

▪ 𝐴 being the Action / Treatment Variable 𝐴𝑖 ∈ {0,1}

▪ 𝑌 being the observed outcome (% of chips usable from lot 𝑖 at the end of the 
process)
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Interactive Regression Model

𝑌 = 𝑔0 𝐴, 𝑋 + 𝑈, 𝔼 𝑈 𝑋, 𝐴 = 0
𝐴 = 𝑚0 𝑋 + 𝑉, 𝔼 𝑉 𝑋 = 0

We estimate (with ML)

ො𝑔 𝐴, 𝑋 = 𝔼 𝑌 𝐴, 𝑋
ෝ𝑚 𝑋 = 𝔼[𝐴 ∣ 𝑋]

To form a score (for ATE)

𝜓 𝑊𝑖; 𝜃, 𝜂 ≔ 𝜓𝑎 𝑊𝑖 , 𝜂 𝜃 + 𝜓𝑏 𝑊𝑖 , 𝜂

= −𝜃 + 𝑔 1, 𝑋𝑖 − 𝑔 0, 𝑋𝑖 +
𝐴𝑖 𝑌𝑖 − 𝑔 1, 𝑋𝑖

𝑚 𝑋𝑖
−
(1 − 𝐴𝑖)(𝑌𝑖 − 𝑔 0, 𝑋𝑖 )

1 − 𝑚(𝑋𝑖)
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ATE and ATTE
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→ Effect on treated larger than on average – How can we derive a policy?



CATE Estimation with Double Machine Learning

▪ Conditional average treatment effects can be derived from 𝜓𝑏

▪ Projection onto a predefined basis vector 𝑏( ෤𝑥) enables us to approximate a 
conditional average treatment effect (CATE) 𝜃0 ෤𝑥 = 𝑏 ෤𝑥 T𝛽.
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Main Component Color Measurement ( ෤𝑥)

𝜓
𝑏



Policies based on the CATE
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Policy Learning by classification

▪ Given 𝜓𝑏 we can directly estimate the optimal policy over a policy class Π

ො𝜋 = argmax
𝜋∈Π

1

𝑛
෍

𝑖=1

𝑛

2𝜋 𝑋𝑖 − 1 𝜓𝑏(𝑊𝑖 , ො𝜂)

▪ This is equivalent to a weighted classification problem with target 

sign 𝜓𝑏 𝑊𝑖 , ො𝜂 and sample weights |𝜓𝑏 𝑊𝑖 , ො𝜂 |.

▪ Athey and Wager (2021) propose an exact tree search here, which is 
computationally demanding (𝒪(𝑛𝑑𝑒𝑝𝑡ℎ)).
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Policytree
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Results (1)
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Results (2)
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Results (3)
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Take aways and future research

▪ Splitting along a “main component” is consistently estimated by multiple methods

▪ Secondary splits in areas with little overlap → large confidence bands

→ 0.62% more yield could be achieved by reworking 6.62% additional chip lots.
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Thank you.

For more info about DoubleML visit https://docs.doubleml.org/

We are open for your questions ☺

oliver.schacht@uni-hamburg.de
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